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Characterising the error associated with satellite rainfall estimates based on space-
borne passive and active microwave measurements is a major issue for many
applications, such as water budget studies or assessment of natural hazards caused
by extreme rainfall events. We focus here on the error structure of the Bayesian
Rain retrieval Algorithm Including Neural Network (BRAIN), the algorithm that
provides instantaneous quantitative precipitation estimates at the surface based
on the MADRAS radiometer on board the Megha-Tropiques satellite. A version
of BRAIN using data from the Tropical Rainfall Measuring Mission (TRMM)
Microwave Imager (TMI) has been compared to reference values derived either from
TRMM Precipitation Radar (PR) or from a ground validation (GV) dataset. The
ground-based measurements were provided by two densified rain-gauge networks
in West Africa, using a geostatistical framework. The comparisons were carried out
at the BRAIN retrieval scale for TMI (instantaneous and 12.5 km) and over a ten-
year-long period. The primary contribution of this study is to provide some insight
into the most significant error sources of satellite rainfall retrieval. This involves
comparisons of rainfall detectability, distributions and spatial representativeness,
as well as separation of systematic biases and random errors using Generalized
Additive Models for Location, Scale and Shape. In spite of their different sampling
properties, the three rain estimates were found to detect rainfall consistently. The
most important BRAIN-TMI error is due to the rain/no-rain delimitation which
causes about 20% of volume rainfall loss relative to PR and GV. BRAIN-TMI
presents a narrow PDF relative to GV and catches the spatial structure of the most
active part of rain fields. The conditional bias is significant (e.g. +2 mm h−1 for
light-moderate rain rates, −2 mm h−1 for rain rates greater than 8 mm h−1) and
the overall bias is within 10%. The PR shows a significant underestimation for high
rain rates with respect to GV. The proposed framework could be applied to the
evaluation of other passive microwave sensors (SSMI, AMSR-E or MADRAS) or
rainfall satellite products. Copyright c© 2012 Royal Meteorological Society
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1. Introduction

Reliable quantitative information on the spatial distribution
of rainfall is essential for hydrologic, meteorological and
climatic applications, for assessing risks (flood/drought)
or evaluating regional and global atmospheric model
simulations. Given their quasi-global coverage, satellite-
based quantitative rainfall estimates are becoming widely
used for such purposes, especially in the Tropics where
the operational ground networks are generally scarce.
Converting the satellite (active or passive) measurements
into quantitative precipitation estimates is challenging,
however. The link between the observations and surface
rain rates is indirect. It depends on the spatial heterogeneity
of the rain fields, the instrument and the retrieval
algorithm. As underlined by the Program to Evaluate High
Resolution Precipitation Products (Turk et al., 2008) led
by the International Precipitation Working Group (IPWG;
see http://www.isac.cnr.it/∼ipwg/), characterizing the error
structure of satellite rainfall products is recognised as a
major issue for the usefulness of the estimates (Yang et al.,
2006; Sapiano and Arkin, 2009; Wolff and Fisher, 2009;
Zeweldi and Gebremichael, 2009). The error needs to be
accounted for in climate analysis (Stephens and Kummerow,
2007), over land in hydrological modelling, natural hazards
monitoring and assessing water resources (Grimes and Diop,
2003; Lebel et al., 2009).

In this study, we focus primarily on quantitative
precipitation estimates (QPE) at the surface, based on
low Earth-orbiting passive microwave measurements.
Instantaneous estimates from these measurements are
usually used in combination with geostationary data to
provide gridded precipitation accumulations (Ushio et al.,
2006; Ebert, 2007; Bergès et al., 2009). How their
uncertainties propagate through such combined products
is not totally understood (Chambon et al., 2012). A
quantitative and detailed characterisation of these errors
is therefore needed. So far this task has been impaired
by the difficulty of obtaining a reference rainfall at the
retrieval scale of the instantaneous satellite products. In this
article we propose an original framework to tackle these
issues. The work was developed in the context of Megha-
Tropiques preparatory studies, but the methodology could
be applied to any rainfall satellite product. Among other
instruments, the mission will carry a passive microwave
imager (nine channels between 19 and 157 GHz) called
MADRAS (Microwave Analysis and Detection of Rain
and Atmospheric Structures). The Bayesian Rain retrieval
Algorithm Including Neural Network (BRAIN: Viltard et al.,
2000, 2006) will be used to estimate instantaneous rain rates
from MADRAS measurements. As MADRAS is not available
yet, BRAIN has been evaluated using ten years of Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager
(TMI) data (Kummerow et al., 1998).

A number of studies investigated the quality of
instantaneous satellite rainfall estimates in various regions
of the world (e.g. Yang et al., 2006; Wolff and Fisher,
2008, 2009), but few have addressed West Africa. Ground
validation in this particular region is a difficult task
because the operational gauge networks are scarce. High-
quality rainfall estimations from satellites are important to
compensate operational data network degradation. Satellite
products have proven very useful for covering the various
scales needed to understand the West African Monsoon

(WAM: Andersen et al., 2002; Redelsperger et al., 2002;
Grimes and Diop, 2003; Conway et al., 2009; Roca et al.,
2010). In the present study we concentrate on two well-
instrumented mesoscale areas in the north of Benin
and near Niamey in Niger. Each area is representative
of a different eco-climatic zone and rainfall regime:
Sahelian for Niger and Sudanese for Benin. We question
the ability of space-based rain retrievals to reproduce
these differences. These sites belong to the African
Monsoon Multidisciplinary Analysis- Couplage Atmosphère
Tropicale Cycle Hydrologique (AMMA-CATCH) long-term
observing system, in the WAM region (Redelsperger et al.,
2006; Lebel et al., 2009, 2010). BRAIN has already been
evaluated over oceans (Viltard et al., 2006); this study is the
first evaluation of the algorithm over land.

One possible approach is to examine all sources of errors
separately and evaluate their cumulative effects (L’ecuyer
and Stephens, 2002; Kummerow et al., 2006). However,
the underconstrained nature of the rainfall remote sensing
impairs the error separation methods, partly because the
models used to perform the retrieval are very sensitive
to unobserved atmospheric parameters (Yang et al., 2006;
Stephens and Kummerow, 2007), particularly over land
as discussed in section 2.4. A different approach is
proposed here. The problem is addressed by evaluating the
satellite QPE overall accuracy with respect to an external,
independent reference rainfall. To do so we must evaluate
the quality of the so-called reference. One should note that
it is not possible to ‘validate’ the BRAIN-TMI estimates in a
strict sense because independent rainfall estimates with no
uncertainty do not exist. On the other hand, the available
independent measurements do provide a useful reference
to help identify possible biases and uncertainties associated
with BRAIN-TMI estimates. The problem is addressed by
comparing BRAIN-TMI QPEs with reference values derived
from ground-based measurements (GV) from densified
rain-gauge networks. We use a geostatistical framework to
assess the uncertainties of this reference. To evaluate BRAIN-
TMI at the regional scale, we use the TRMM Precipitation
Radar (PR), which is currently the only active instrument
measuring rainfall from a satellite platform conjointly
with a radiometer (TMI). PR rainfall estimates are often
considered as a reference for TMI-based rainfall estimates
(e.g. Yang et al., 2006; Wolff and Fisher, 2008). At the whole
WAM region scale, the PR provides an extended but indirect
surface rainfall estimation, whereas the rain-gauge networks
provide a direct measure of rain rates over a limited area.
The PR however suffers from specific errors (section 2.3).
Therefore the PR is also compared to the gauges in order to
evaluate it as a reference for BRAIN-TMI.

We assess the accuracy of the instantaneous rain products
at the original resolution of BRAIN-TMI (i.e. the footprint
scale). Comparison of instantaneous products filters out the
effects of the temporal sampling error (Wolff and Fisher,
2009). Comparison at the footprint scale avoids bringing
in additional uncertainties due to spatial resampling. The
BRAIN-TMI, PR and GV rain rates are pixel-matched
in both time and space, and spatially averaged at the
BRAIN-TMI retrieval scale (12.5 km). Several aspects of
errors are revealed and quantified including comparisons of
rainfall detectability and rainfall rate distributions, spatial
representativeness of error, and separation of systematic
biases and random errors. The comparison sample size is
an issue for computing robust statistics. To compensate for
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the poor temporal sampling of low Earth-orbiting satellites
(Lin and Hou, 2008; Wolff and Fisher, 2008, 2009), we use
ten years (1998–2007) of satellite overpasses.

The BRAIN-TMI algorithm, the PR data and the reference
rainfall used for comparisons are presented in section 2. The
representativeness of the comparison datasets is evaluated.
Section 3 assesses the ability of BRAIN-TMI and PR estimates
to retrieve the reference rainfall features in terms of rainfall
occurrence, sensitivity and spatial structure. In addition
to BRAIN-TMI performances regarding the rain/no rain
detection, the quantitative retrieval is addressed. Section 4
provides an empirical error model of BRAIN-TMI and PR
estimates versus reference rainfall. Probability distribution
functions (PDFs) of the residuals between reference rainfall
and satellite estimates are computed and analysed. We
consider the influence of the rainfall intensity, and segregate
systematic and random error. Concluding remarks can be
found in section 5.

2. Data sources

One of the first challenges is the lack of knowledge about the
true average rainfall for the spatial domains considered. The
instantaneous satellite rainfall estimate R(A) is compared
with a reference rainfall Rref (A) for a spatial domain A (which
may be a satellite mesh, watershed . . . ). The reference
rainfall Rref (A) is a proxy of the true (and unknown) area-
averaged rainfall rate. The reference data Rref (A) used to
evaluate the satellite estimates should spatially match the
corresponding true rainfall averaged over the same area
A. We consider the residuals between the estimated and
reference values to build an error model, with:

ε = (R − Rref ). (1)

2.1. Comparison domains

Two rain-gauge networks located in Niger and Benin are
used for this study and presented in Table 1 with their gauge
distributions shown in Figure 1. Data are provided every
5 minutes and have been collected and quality-controlled
continuously since 1998. The distribution of gauges for the
network around Niamey was optimised (Lebel and Amani,
1999) to obtain the best possible accuracy over the domain
at the rain-event scale (typically a few hours). The number of
tipping-bucket gauges was brought up to 54 for the AMMA
Enhanced Observing Period in 2006. The Upper Ouémé
catchment in Benin was instrumented with 52 tipping-
bucket gauges as evenly distributed as possible. On average,
both the Ouémé and Niamey networks have a density of
about 1 gauge/400 km2 (1 gauge/300 km2 at their best) over
a 1◦ x1◦ area.

The two sites of Benin and Niger differ in terms of rainfall
regimes. The convective systems of Niger are considered
among the most intense in the world and are usually

associated with strong electric activity and high ice content.
The convective systems in Benin are more frequent and
offer more diversity. These characteristics certainly explain
the differences of annual mean intensity and rain amount
between the two sites (Lebel et al., 2009). Figure 2 presents
distributions of rain intensities computed from rain-gauges
at the BRAIN-TMI spatial scale (see following section).
Both the PDF of rain intensity by occurrence (PDFc) and
by volume (PDFv) are computed as proposed by Wolff
and Fisher (2009) and Amitai et al. (2009). If the former
simply shows the occurrence in percentile of a given interval
of intensity, the latter shows the contribution of this rain
bin to the total volume. The PDFc highlights the estimate’s
sensitivity as a function of rain rate. The PDFv is computed as
a ratio between the sum of the rain rates inside each bin and
the total sum of rain rates; it attenuates the influence of light
rain rates when comparing PDFs of estimates derived from
instruments characterised by different detection thresholds.
Both the Benin and Niger PDFc are unimodal but the mode
is about 0.4 mm h−1 for Benin and 0.8 mm h−1 for Niger.
The shift of the contribution to the total rain volume towards
heavier rain rates in Niger compared to Benin is in agreement
with the greater proportion of Mesoscale Convective Systems
(MCS) observed over Niger (see following section). In fact,
the proportion of heavy rain rates tends to increase when
the systems are organised. The comparisons of the lower
end of the rainfall intensity spectra have to be interpreted
with caution due to the uncertainties in gauge measurement
increasing with lower intensities (Ciach, 2003). The features
seen in Figure 2 are to be linked to the brightness temperature
(Tb) signatures of rain events at 37 GHz and 85 GHz from
which BRAIN-TMI infers rain rates at the ground. Figure 3
presents the PDFc of Tb for the two sites. For all channels
considered, the Tb distribution over Niger is shifted towards
lower values compared to the Benin PDFc. The mean Tb at
channel 37 GHz is 7 K lower in Niger than in Benin and
∼ 15 K lower for either horizontal or vertical polarization
at channel 85 GHz. Differences at the warm end of the
PDFs when in a non-rainy or lightly rainy situation could be
due to the differences in surface emissivity between the two
regions. One must notice that the main difference between
the two PDFs does not occur at the low end (convection)
but roughly in the 230 K range (at 85 GHz), which is usually
characteristic of Tbs observed in the stratiform regions. This
difference could be due to a difference in ice content, ice
density or spatial homogeneity of the ice field. Since the
mode of the rain occurrence is slightly higher in Niger, it
is likely the ice content that causes the PDF difference in
Tbs. This difference in ice content seems then due mostly to
the amount of convection rather than its intensity since as
previously stated the coldest Tbs are not dramatically colder
in Niger.

Table 1. Characteristics of the rain-gauge networks.

Name Localization Area (km2) No. gauges

Niger – Niamey 13.0◦ N–14.2◦ N 1.4◦ E – 3.0◦ E 25 × 103 54
Sahel area 13.0◦ N–14.2◦ N 11.5◦ W – 30◦E 5.96 × 105 –
Benin – Ouémé 9.0◦ N – 10.0◦ N 1.5◦ E – 2.8◦ E 15.4 × 103 52
Northern Savanna area 8.0◦ N – 12.0◦ N 11.5◦ W – 30◦E 2.01 × 106 –
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Figure 1. Maps of kriging error in per cent of the rainfall field variance at 5 min time-step and at BRAIN-TMI spatial resolution for the
(left) Benin and (right) Niger networks. Circles indicate the effective positions of the rain-gauges. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

Figure 2. Probability distributions of rain rates for the rain-gauge rainfall
kriged at the BRAIN-TMI pixel scale over Benin and Niger. The solid
lines represent the distribution by volume PDFv = {R x PDF(R)} for
Benin (grey) and Niger (black) respectively. The dashed lines represent the
distribution by occurrence PDFc = PDF(R) for Benin (grey) and Niger
(black) respectively. Note that the x-axis is in log-scale.

2.2. Rain-gauge based rainfall

In the current study, all significant rain events observed
coincidentally by TRMM and the rain-gauge networks from
1998 to 2007 over the monsoon period (roughly 1 May to
30 September) were collected, yielding 113 events in Niger
and 214 events in Benin. The rain events are defined from
the rain-gauge networks using criteria close to D’Amato
and Lebel (1998): (i) at least 10 rain-gauges are in working
condition; (ii) at least 10% of the rain-gauges record more
than 0.5 mm of rain; (iii) at least one station records more
than 1 mm; and (iv) the end of the rain event is defined
when no rain is recorded at any of the network stations for
more than 30 min. The selected events account for 90%
of the total rainfall measured over the monsoon period.
The measurements closest in time to the TRMM satellite
local overpass schedule time are used. For GV, a block-
kriged rainfall pixel is computed from gauge measurements

to match each satellite pixel in case of TRMM overpasses
(Kirstetter et al., 2010).

Rainfall estimation by gauges is subject to minor
instrumental errors due to the direct nature of the
measurement, even if uncertainties can be significant for low
rain rates (e.g. Ciach and Krajewski, 1999). The limitations
of point gauge measurements for a reliable evaluation of
area-averaged radar rainfall estimates have already been
studied (e.g. Habib et al., 2004). The spatial variability of
rainfall at small scales and the large resolution difference
between gauge and satellite (as much as 10 orders of
magnitude in area) may cause large discrepancies in the
statistical sampling properties and add statistical noise in the
comparison (Ciach and Krajewski, 1999). The block-kriging
linear interpolation estimator (Journel and Huijbregts,
1978) is used to estimate the reference rainfall Rref (A)
and the associated sampling error over the BRAIN-TMI
footprint A from gauge observations. By weighting the rain-
gauges individually, the kriging estimator is unbiased and the
estimation variance is minimised (Lebel and Amani, 1999).
A detailed description of the block-kriging technique, which
provides an unbiased estimate of rainfall and minimises the
estimation variance, can be found in Kirstetter et al. (2010)
and Lebel and Amani (1999). Kriging makes use of a
structure function given by a normalised variogram γ

(Lebel et al., 1987), which represents the spatial correlation
of the rain field.

As a first step, the variogram is used to check if the
density of the network is sufficient to capture the structure
of the rain field down to the 12.5 km resolution required
here. Experimental normalised variograms are computed
from the data at the 5 min time step over the period. The
following models are fitted in order to describe the structure
by a relatively simple function and for the interpolation by
kriging:

γBenin(h) = 0.57{1 − exp(−h/1)} + 0.56{1 − exp(−h/32)}
γNiger(h) = 0.30{1 − exp(−h/1)} + 0.80{1 − exp(−h/28)}

(2)

(with interdistance h in km). Figure 4 shows the
experimental variograms as well as the fitted models. Note
that up to 30 km, the spatial decorrelation is significantly
higher in Benin than in Niger, in agreement with the greater
proportion of organised convective systems observed over
the latter. The spatial representativeness of the rainfall
measurements may be quantified by the mean decorrelation
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(a)

(b) (c)

Figure 3. Probability distributions of brightness temperatures over Benin and Niger for rain events only. The solid and dashed lines represent the
distributions by occurrence for Benin and Niger respectively for (a) 37 GHz V, (b) 85 GHz H, and (c) 85 GHz V.

distance (the variogram reaches 95% of its maximum).
This decorrelation distance is about 70 km for both sites.
This means the gauge networks with an average density of
1 gauge every 400 km2 can be considered as moderately
dense for detecting the variability of rainfall associated
with large rainfall systems for 5 min accumulations. Here
we need rainfall estimates over BRAIN-TMI pixels. Their
quality depends on the decorrelation at small interdistances.
The rapid decorrelation of spatial structure at short
interdistances suggests that the spatial representativeness
of rainfall measurements may be limited, especially in the
case of disorganised systems like in Benin. The kriging
estimation variance gives a quantitative assessment of the
estimation quality. It depends on the variogram and the
relative position of the gauges with respect to the estimation
domain A (Figure 1). As we use a normalised variogram,
the estimation variance is expressed in proportion to the
field variance (see Kirstetter et al. (2010) for more details).
Figure 1 shows a map of the Benin and Niger areas with the
kriging estimation standard deviation (square root of the

estimation variance) as an indicator of the estimation quality.
As expected, the highest quality is found near the densest
part of the rain-gauge networks. The estimation degrades for
pixels that are further away from the gauge locations. The
kriging standard deviation was used as a guideline to select
the ‘best’ pixels in the GV. A two-step selection was applied
in order to keep only the pixels with low estimation variance.
First, the pixels containing at least one gauge were selected.
Second, pixels were further sorted according to their relative
error (kriging standard deviation/kriging estimate): they are
labelled as ‘robust’ if the estimated standard deviation is
inferior to the estimated value and ‘non-robust’ otherwise.
GV null values are considered as robust. The averaged
relative error over the robust GV pixels is 35% while 118%
for the whole set in Benin; the values are 25% and 70% for
the Niger site. The ratio of the mean error to the standard
deviation of the rain-gauge estimates decreases from 13% to
9% in Benin and decreases from 12% to 8% in Niger, when
considering only the ‘robust’ dataset.
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Figure 4. Spatial variograms of rain-gauge data at the 5 min accumulation
period for 1998–2007. The empirical variograms are plotted with crosses
and circles for Niger and Benin respectively, and the models fitted are
represented by the thick black lines.

2.3. Precipitation Radar (PR) based rainfall

The TRMM PR measures the reflectivity profiles at Ku band.
In the BRAIN architecture, the PR may be regarded as a
‘calibrator’ of the passive microwave precipitation estimates,
while the passive radiometers, already a component of
several polar-orbiting observatories, provide more extensive
sampling of precipitation events over the globe.

PR observations provide a more direct measurement of
the rain rate than TMI. However, some artefacts must be
accounted for such as contamination by surface backscatter,
attenuation and extinction of signal, bright-band effects and
uncertainty of the Z-R relationship (Wolff and Fisher, 2008).
In the present study, the surface rain rate at each PR footprint
location is a standard TRMM product (2A25 v6) described
in Iguchi et al. (2000). The scan geometry and sampling rate
of the PR lead to footprints spaced approximately 4.3 km
cross- and along-track (5.1 after TRMM boost), over a
215 km wide swath centred within the 760 km wide TMI
swath; therefore, TMI and PR observations over the PR
swath are nearly coincident in time and space, except for a
1 min offset.

The PR pixels falling within 6.25 km of the centre of a TMI
pixel are averaged to downgrade the former to the resolution
of the BRAIN-TMI product. The minimum theoretically
detectable rain rate by the PR is fixed by its sensitivity and is
about 17 dBZ, or 0.5 mm h−1, but the spatial averaging at
12.5 km reduces this threshold to roughly 0.3 mm h−1.

2.4. BRAIN TRMM Microwave Imager (TMI) based rainfall

The TMI complements the PR by measuring brightness
temperatures at five microwave frequencies: 10.7, 19.4,
21.3, 37.0 and 85.5 GHz. Each frequency is dual polarised
(horizontal, H and vertical, V) except for the 21.3 GHz
channel, which is only vertically polarised.

The BRAIN-TMI algorithm used here to retrieve surface
rainfall from brightness temperatures is described in
Viltard et al. (2000, 2006). The algorithm relies on a
retrieval database made of brightness temperature vectors
associated with their corresponding rain rate. Each element
of the database is obtained from rain profiles from the
PR coupled with a radiative transfer model to generate the
corresponding Tbs. Since PR provides mostly information
on the liquid phase, a base of profiles from the Goddard
Cumulus Ensemble is used to set up the ice contents that
best match the PR profile following the process detailed
in Viltard et al. (2000). In the retrieval itself, an observed

brightness temperature vector is compared to each element
of the database. BRAIN uses Bayes’s probabilistic theorem to
determine the rain-rate profile, R, from the a priori database
given a Tb vector:

Pr(R| Tb) = Pr(R) Pr(Tb| R) (3)

where Pr(R) is the probability that a certain profile R
will be observed and Pr(Tb| R) is the probability of
observing the brightness temperature vector Tb, given
a particular rain-rate profile. The algorithm screens to
determine whether or not rain exists and distinguish between
rain/no-rain zones before attempting to quantify the rainfall.
Viltard et al. (2006) showed that the retrieval error is
dependent on the rain rate, with maximum errors at the low
and high ends of the rain intensities. The retrieval method
is optimised to exhibit a low total bias for climatological
purposes and thus shows a high standard deviation on a
point-to-point comparisons basis.

A complete description of BRAIN is beyond the scope
of this article but it is important to note some specific
issues for the rainfall retrieval over land. Over land only
the scattering channels (namely 85 GHz and 37 GHz) can
be used because of the radiometrically warm land surface.
As the brightness temperature at these frequencies is mostly
sensitive to the scattering processes in the higher regions of
the cloud (Wilheit et al., 2003), the available information
for the retrieval is not directly related to the surface rainfall.
Hence there are particular needs for a detailed assessment of
BRAIN-TMI performances especially regarding the rain/no-
rain mask and the quantitative retrieval.

2.5. Comparison samples and domains

Several factors including rainfall intermittency, the discrete
temporal sampling of TRMM, differences of swath between
TMI and PR and the selection of limited number of ‘robust’
GV pixels (see above) reduce the number of comparison
samples over the ten-year period. Table 2 provides the
number of these samples for the different sensors, inclusive
and exclusive of non-rainy pixels (0 mm h−1). The
sample sizes for GV/BRAIN-TMI comparison (Table 1)
are primarily limited by the overpass frequency of TRMM
and the number of rain events; as rain events are more
frequent in Benin than in Niger, the number of samples is
larger in this area.

In order to assess the representativeness of the two
AMMA-CATCH networks, the same statistics were also
computed over two extended regions similar to those
described in Geerts and Dejene (2005) and summarized
in Table 1. The Benin GV site is included in their northern
Savanna region and the Niger GV site is included in their
Sahel region. These climatic regions are each characterized
by distinct and rather homogenous rainfall regimes
(Nicholson et al., 2000, 2003; Leroux, 2001; Adeyama and
Nakamura, 2003). Figure 5 shows quantile–quantile plots
between (i) the BRAIN-TMI and PR datasets for the two
extended climatic regions (x-axis), and (ii) the subset of
satellite pixels that match the GV for the two validation
sites. Table 3 provides values of the conditional mean
and standard deviation. The ‘GV-resampled’ BRAIN-TMI
rainfall distribution (Figure 5(a) and (c)) does not show a
clear deviation from the 1:1 line compared to the regional
distribution. The Benin (Niger) mean estimate is within
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Table 2. Comparison samples for different couples of sensors.

Benin Niger

Including non-rainy (0 mm h−1) Rainy only Including non-rainy (0 mm h−1) Rainy only

BRAIN-TMI (GV domain) 9123 2286 6596 1524
BRAIN-TMI (climatic regions) 133 027 7655 43 201 2287
PR (GV domain) 1498 555 1290 584
PR (climatic regions) 133 027 12 662 43 201 3769

The samples are computed for rain events as defined by the gauge networks over the GV domains. In addition, all comparison pairs of BRAIN-TMI and
PR are included over the two climatic regions.

Table 3. Conditional mean and standard deviation of comparison samples for the two satellite-based estimates.

Benin Niger

Mean (mm h−1) St. dev. (mm h−1) Mean (mm h−1) St. dev. (mm h−1)

BRAIN-TMI (GV domain) 4.92 4.40 7.30 6.39
BRAIN-TMI (climatic regions) 4.46 4.69 7.03 6.00
PR (GV domain) 3.77 4.50 3.43 3.56
PR (climatic regions) 3.24 3.86 3.76 4.07

The samples are computed for rain events as defined by the gauge networks over the GV domains. In addition, all comparison pairs of BRAIN-TMI and
PR are included over the so-called climatic regions.

10% (6%) of the Northern Savanna (Sahel). The PR shows
slight departures from the 1:1 line on PDFc comparison and
greater quantitative differences (the mean estimates over
GV sites present differences greater than 15% compared to
the two extended climatic regions). This suggests that the
sampling of BRAIN-TMI over both sites for the ten-year
period is quite representative of the corresponding climatic
distribution of rainfall. The larger departures of the PR
estimates are likely due to the more limited number of
samples. We need to consider the climatological sample
when comparing PR to other sensors.

To assess the impact of the limited temporal sampling of
TRMM, we compared the satellite overpass-resampled GV
dataset with the entire time series. Figure 6 provides for
both sites quantile–quantile plots between (i) the whole GV
dataset (x-axis), and (ii) the subset of pixels that match a
TMI and a PR overpass respectively. Table 4 provides the
corresponding conditional mean and standard deviation.
For the TMI overpasses over both GV sites the latter shows
a slight underestimation within 10% of the reference values.
The underestimation is significantly greater for the PR
sampling (e.g. greater than 10% in Benin and up to 32%
in Niger for the mean). These results suggest that the TMI
samplings over the AMMA-CATCH sites for the 10-year
period are representative of the corresponding local climatic
distribution of rainfall. The limited PR swath is a likely
explanation for the undersampling of rainfall events over the
two GV sites (Table 2). This affects the detection of higher
and less frequent rainfall intensities. The ‘PR-resampled’
distribution of rainfall is consistently shifted towards lower

values than the ‘BRAIN-TMI resampled’ and the whole GV
sets.

3. Rainfall data analysis

This section analyses the ability of PR and BRAIN-TMI
rain retrievals to reproduce the rainfall variability derived
from the rain-gauge data. First, contingency tables show the
links between BRAIN-TMI and the PR rainfall detection and
the GV reliability. The PDFs of rainfall estimates provide
in-depth information on the sensors’ sensitivity to rainfall
regime differences. The spatial structures of the rainfall fields
are also compared.

3.1. Contingency tables

Table 5 shows the contingency tables for PR relative to GV
with percentile of Hits (H, both GV and PR detect rain),
Misses (M, PR does not detect rain while GV does), False
alarms (F, PR detects rain while GV does not), and Correct
rejections (C, both GV and PR do not detect rain) over both
sites. The GV data are separated into three sub-samples: the
non-robust set, see section 2.2, the robust GV set and the
‘whole’ GV set. GV null values are considered as robust.
All coincident and collocated PR values are considered and
sorted according to the GV samples. Table 6 provides the
mean rainfall values according to the same contingency
tables, with PR on the left-hand side of the ‘/’ sign and the
GV on the right-hand side. The false detections (M + F) of

Table 4. Conditional mean and standard deviation of GV.

Benin Niger

Mean (mm h−1) St. dev. (mm h−1) Mean (mm h−1) St. dev. (mm h−1)

Whole GV set 4.09 7.04 4.49 7.67
BRAIN-TMI sampled GV 4.00 6.45 4.25 7.01
PR sampled GV 3.63 5.57 3.03 4.21
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(a) (b)

(c) (d)

Figure 5. Quantile–quantile plots of the rainfall distribution for the GV sites (y-axis) and the regional area (x-axis) over (a)–(b) Niger/Sahel and
(c)–(d) Benin/Northern Savanna, for (left) BRAIN-TMI and (right) PR. ‘RG’ denotes rain-gauge. The positions of the 10 and 95 percentiles are showed
for each distribution.

PR are mainly associated with the non-robust GV data: 72%
in Benin and 61% in Niger. Only 16% in Benin and 14% in
Niger are improperly classified when using the ‘robust’ GV
dataset. The Misses (M) are the main contributors to the false
detection population (i.e. 95% in Benin and 85% in Niger
for the ‘whole’ dataset). These Misses of PR are coincident
with low GV values (see Table 6: 0.1 mm h−1 for the
non-robust set for both Benin and Niger). By comparison,
the correct detections (H + C) of PR are mainly associated
with the robust GV set (more than 80% for both sites).
For the same robust GV set, the Hits of PR are coincident
with the higher GV values with mean rainfall rates equal
to 4.2 mm h−1 in Benin and 3.1 mm h−1 in Niger. One
should note for both sites that (i) the mean PR (F) values
are significantly lower than the mean PR (H) values, and
(ii) the mean GV (M) values are significantly lower than the
mean GV (H) values. Finally both mean GV and PR values

are higher for the robust GV set than for the non-robust GV
set. The discarded rain volumes by Misses of PR represent
9% of the GV rainfall volume in Benin and 6% in Niger.
False alarms represent 3% and 2% of the PR rainfall volume
in Benin and Niger, respectively. To estimate the minimum
value detectable by the PR, we use the ‘whole’ GV dataset
(since the ‘robust’ dataset is defined as points for which the
standard deviation is lower than the GV value itself, it is not
very representative of the light rain intensities). Considering
that 80% of the ‘whole’ GV rain rates that are not detected
by the PR in Benin and Niger are lower than 0.3 mm h−1,
the sensitivity of the PR at the BRAIN-TMI resolution is
confirmed to be close to this value. Despite the limited
number of direct comparisons between GV and PR, the
similarity of our results in Benin and Niger is an indication
of their consistency. The (M) are probably associated with
high intermittency and/or the ‘rain/no rain’ limits of rain
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fields. These features are not robustly dealt with by the
kriging technique because the spatial structure is unclear at
the edges (as discussed in section 2.2 and Figure 4). The PR
probably misses them because the rain rates are close to the
detection threshold. They are consistently more frequent in
Benin. This suggests that the PR can indeed capture the main
rain regions but loses the weaker echoes (Schumacher and
Houze, 2000), probably due to its sensitivity. The discarded
rainfall volumes remain limited and need to be compared
to BRAIN-TMI’s in order to evaluate the PR as a reference
for BRAIN-TMI.

Table 7 shows the contingency tables for BRAIN-
TMI relative to the GV datasets. Table 8 provides the
corresponding mean rainfall values. The same comments as
for PR can be made for TMI. Misses (M) contribute totally
to the false detection. A similar result arises when using the
PR as a reference over the climatic regions. This suggests that
BRAIN-TMI, as PR, misses the lightest intensities. Based on
Table 8, 0.6 mm h−1 appears to be the sensitivity threshold
for BRAIN-TMI. The false detections are more significant
with ‘robust’ GV than for PR (27% in Benin and 32% in
Niger – Table 7). It should be noted that the GV mean values
(robust case) are 33% and 116% higher in Benin and Niger
respectively in Table 8 (TMI) than in Table 6 (PR). A similar
feature can be seen for the Misses. It seems that the BRAIN-
TMI retrieval is performed over the ‘rainiest’ zones only. This
effect is probably due to the fact that BRAIN-TMI retrieves
rain only when a clear scattering signature is detected in the
Tbs. This effect is expected to be particularly sensitive in the
no-rain to light-rain transition regions of the rain systems
and also for all the events with no developed ice phase (as in
the case of warm rains that are more frequent in Benin). In
order to assess the discarded rain volume by Misses, Table 9
provides the percentile of Hits and Misses of BRAIN-TMI
relative to ‘robust’ GV over the two GV sites and relative to
PR over the two climatic regions in percentages of the total
rain volume for GV and PR respectively. The False Alarms
are negligible. Hits and Misses are similar over the two sites
and with the two references. The (H) range from 40% to
48%, the (M) from 52% to 60%, showing that BRAIN-TMI
detects no rain (and provide no retrieval) in more than half
of the rain fields. The Hits and Misses relative to PR are very
consistent in the Sahel and Northern Savanna regions. The
missed rain volumes range from 22% to 34%.

The conclusion of this comparison between PR, GV
and BRAIN-TMI would be that the latter misses at least
20% of the rain volume due to its rain/no-rain mask. The
performances of PR are generally better than BRAIN-TMI
and the discarded rainfall volumes by Misses of PR are
limited compared to BRAIN-TMI. Provided that the results
from this study are representative enough, PR can be used
as a reference to evaluate the BRAIN-TMI mask over land.

3.2. Probability distributions by occurrence and rain volume

Hereafter, the TMI and PR rain estimates are the conditional
ones (positive rainfall) coincident and collocated with the
non-zero GV estimates. For the PR, the rain statistics are
computed for the climatological regions (Savanna and Sahel)
which are the only ones to be representative enough (see
section 2.4).

PDFc and PDFv for PR versus GV on the Benin and
Niger sites are shown in Figure 7. The rain rates from PR
exhibit similar PDFc in Benin and Niger. Compared to

GV’s PDFc, PR tends to overestimate the lighter rain rates
(∼ 0.3–0.7 mm h−1). PR demonstrates poor detection of
the lightest rain rates (below ∼ 0.3 mm h−1) on both sites,
as expected from the previous section. The PR and GV
PDFc presents similar features for rain rates > ∼ 1 mm h−1.
Despite the low occurrence of relatively high rain rates
(>10 mm h−1), their contribution to the total rainfall
volume is significant (greater than 60%). The mode of PDFv

for PR is shifted toward lower rain rates (∼ 10 mm h−1)
compared to the GV mode (∼ 18 mm h−1), in agreement
with the results found in Amitai et al. (2006, 2009). This is
attributed to high rainfall rates (>10 mm h−1), which may
be underestimated by PR because of insufficient correction
due to attenuation losses as suggested by Wolff and Fisher
(2008) for the 2A25 version 6. From Figure 7(c), this feature
is slightly but consistently more significant in Niger than in
Benin, higher rainfall being proportionately more frequent
in the former. These features should be taken into account
when considering the PR as a reference for BRAIN-TMI.

Figure 8 is similar to Figure 7 except for BRAIN-TMI.
BRAIN-TMI generally does not detect the lightest rain rates
(below 1.5 mm h−1) very well. This trend has already
been mentioned in Wolff and Fisher (2009) for TMI-based
estimates over Melbourne, Florida. Again, this is likely due
to the difficulty in separating weakly rainy from non-rainy
zones solely based on the brightness temperatures at 37 and
85 GHz. (The situation is slightly more favourable in Niger
where the GV PDFc is shifted towards heavier rain rates
when compared to Benin.) BRAIN-TMI estimates show a
tendency to overestimate the occurrences of rain rates in the
range 2–20 mm h−1. The mode of the BRAIN-TMI PDFc

is therefore shifted from 0.5–1.5 mm h−1 (GV) to around
4.5 mm h−1, and consistently greater in Niger than in Benin.
As a consequence, both PDFv for BRAIN-TMI show their
highest peak around 4 mm h−1 (∼ 50% of the total amount).
As for GV, BRAIN-TMI PDFv in Niger is shifted towards
heavier rain rates than in Benin.

Not surprisingly, the PDFs of PR estimates over land are
significantly better than BRAIN-TMI. The PR distributions
mostly match the GV distributions and show increased skill
in detecting the lighter rain rates. PR could be used as
a reference to evaluate the BRAIN-TMI PDFs over land,
but we need to keep in mind that PR like BRAIN-TMI
underestimates the heaviest rain rates. BRAIN-TMI detects
more clearly than PR the differences in rainfall regime
between Benin and Niger.

3.3. Spatial structure of the estimated rainfall fields

For hydrological applications, the total amount of water
over a basin as well as its location and spatial correlation
within the catchment might be important. This is relevant
for assessing the ability of space-based estimates to retrieve
the spatial structure of rainfall fields as seen by GV.

An appropriate model is fitted to the empirical normalised
variograms. Among the set of classical models, the spherical
model was found most suitable. The difference of spatial
resolution of the data (points versus 12.5 km domains)
needed for a different model fitting from the double
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Table 5. Contingency table for PR over Benin and Niger areas.

Benin Niger

Whole set Robust GV 1 Non-robust Whole set Robust GV Non-robust
GV 3080 pts 1498 pts GV 1582 pts GV 2164 pts 1290 pts GV 874 pts

Hits (H) 35% 44% 28% 46% 51% 39%
Misses (M) 43% 11% 72% 28% 5% 61%
False Alarms (F) 2% 5% – 5% 9% –
Correct rejection (C) 20% 40% – 21% 35% –

The results are provided for robust/non-robust GV data according to a criterion based on the relative error: (kriging standard deviation/kriging estimate)
>1.

(a) (b)

Figure 6. Quantile–quantile plots for GV ‘satellite sampled’ and ‘continuously temporal’ rainfall distribution comparison over (a) Benin and (b) Niger.
The positions of the 10 and 95 percentiles are showed for each distribution.

exponential proposed for the GV data in Eq. (2) is used:

γ (h) = C0 + (C − C0)

(
3

2

h

d
− 1

2

(
h

d

)3
)

for 0 < h < d

(4)

γ (h) = C for h > d
(5)

where the three parameters are the nugget (C0), the sill
(C) and the variogram range (d). The spherical model is
suitable when the empirical variogram effectively presents
a sill, theoretically equal to the field variance, beyond the
range (d), which corresponds to the mean decorrelation

distance of the estimates. The nugget parameter can be used
to describe a possible discontinuity of the variogram at the
origin which may be due to (i) the process variability at
scales poorly resolved by the observation system, and/or (ii)
measurement errors. In the following, these parameters are
used to characterise the structure of rainfall. Normalised
variograms of GV, PR and BRAIN-TMI estimates are
displayed in Figure 9. Table 10 summarises the parameters
of these variograms.

The nugget values are very distinct depending on the
sensor. This is limited for GV (around 10% of the sill)
and more significant for TMI (three times greater). The
smaller GV nugget is an indication of a better sampling
for the reference rainfall, as discussed in detail in section

Table 6. Mean rainfall values associated to the contingency table for PR/GV over Benin and Niger areas.

Benin Niger

Whole set GV Robust GV Non-robust GV Whole set GV Robust GV Non-robust GV
(mm h−1)3080 pts (mm h−1)1498 pts (mm h−1)1582 pts (mm h−1)2164 pts (mm h−1)1290 pts (mm h−1)874 pts

Hits (H) 2.4/2.6 3.2/4.2 1.2/0.2 2.2/2.1 3.1/3.1 0.7/0.2
Misses (M) 0.0/0.3 0.0/1.6 0.0/0.1 0.0/0.3 0.0/1.6 0.0/0.1
False alarms (F) 0.9/0.0 0.9/0.0 – 0.5/0.0 0.5/0.0 –
Correct rejection (C) 0.0/0.0 0.0/0.0 – 0.0/0.0 0.0/0.0 –
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(a) (b)

(c)

Figure 7. Probability distributions of rain rates for the GV and the PR rainfall over (a) Benin/Northern Savanna and (b) Niger/Sahel. The solid and
dashed-dotted lines represent the distribution by volume PDFv and the distribution by occurrence PDFc respectively, while the grey and black lines
represent the distributions for GV and PR respectively. (c) Probability distributions of rain rates for the PR rainfall over Northern Savanna (grey) and
Sahel (black). Note that the x-axis is in log-scale.

Table 7. Same as Table 5 but for BRAIN-TMI.

Benin Niger

Whole set GV Robust GV Non-robust GV Whole set GV Robust GV Non-robust GV
17942 pts 9123 pts 8819 pts GV 11601 pts 6596 pts 5005 pts

Hits (H) 17% 25% 9% 15% 23% 4%
Misses (M) 58% 27% 91% 60% 32% 94%
False alarms (F) 0% 1% – 0% 0% –
Correct rejection (C) 25% 47% – 25% 45% –

Table 8. Same as Table 6 but for BRAIN-TMI.

Benin Niger

Whole set GV Robust GV Non-robust GV whole set GV Robust GV Non-robust GV
(mm h−1)17942 pts (mm h−1)9123 pts (mm h−1)8819 pts (mm h−1)11601 pts (mm h−1)6596 pts (mm h−1)5005 pts

Hits (H) 4.5/4.2 4.9/5.6 3.3/0.3 7/5.9 7.3/6.7 5.4/0.4
Misses (M) 0/0.7 0/2.5 0/0.1 0/0.8 0/2.5 0/0.1
False alarms (F) – 2.8/0 – – – –
Correct rejection (C) 0/0 0/0 – 0/0 0/0 –
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(a) (b)

(c)

Figure 8. Same as Figure 7 but for BRAIN-TMI.

2.2. The decorrelation of the BRAIN-TMI spatial structure at
short interdistances suggests that the independently adjacent
retrievals by BRAIN are affected by the noise of the brightness
temperatures at the 85 GHz channel. As the BRAIN-TMI rain
mask (where BRAIN-TMI performs retrieval) is essentially
restricted to the more intense rain rates (see section 3.1),
we applied the mask to PR data to compare the variograms
within and outside the mask. The variogram computed with
the whole PR dataset presents a large nugget (around 60%
of the sill) that could be explained by the rain intermittency,
contamination by surface backscatter, attenuation of the
signal, or inaccuracy of the Z-R relationship. Within the
BRAIN-TMI rain mask, the nugget significantly decreases,

getting closer to the BRAIN-TMI one in both Northern
Savanna and Sahel. This indicates that the rain fields
outside the BRAIN-TMI rain mask are significantly more
disorganised, intermittent and noisy than inside, which is
consistent with the concept of rain areas that are not detected
by TMI and might be only partially detected by PR.

The variogram ranges of BRAIN-TMI and PR are quite
similar to GV’s (around 30 km) although the former presents
a slightly greater range (about 5 km) than GV’s. This
feature can be related to the fact that BRAIN-TMI rainfall
distribution is narrower than GV’s, which is consistent
with a smoothing of the rain fields and an increase of the
decorrelation distance of the estimates. The range of the

Table 9. Hits and Misses of BRAIN-TMI relative to GV and PR rainfall with discarded rain volume by BRAIN-TMI due to Misses relative to GV and PR.

Benin/Northern Savanna Niger/Sahel

Robust GV (9123 points) PR (133 027 points) Robust GV (6596 points) PR (43 201 points)

Hits (H) 48% 40% 42% 41%
Misses (M) 52% 60% 58% 59%
Discarded rain volume 32% 29% 34% 22%

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 894–911 (2013)



906 P.-E. Kirstetter et al.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Spatial variograms for (a)–(b) GV, (c)–(d) BRAIN-TMI and (e)–(f) PR, over (left) Niger/Sahel and (right) Benin/Northern Savanna for the
1998–2007 period. The empirical variograms are plotted with crosses, and the models fitted are represented by the thick black lines.

Table 10. Parameters of the normalised variograms (spherical model) for GV, BRAIN-TMI and PR. The nugget is expressed as a percentage of the
normalised sill. The values for PR variograms restricted to the BRAIN-TMI mask are indicated (brackets).

Benin/Northern Savanna Niger/Sahel

Nugget (% sill) Range (km) Nugget (% sill) Range (km)

GV 11 29 9 35
BRAIN-TMI 37 36 31 39
PR (PR/BRAIN-TMI) 65 (43) 24 (36) 54 (34) 27 (42)

whole PR dataset is slightly smaller than GV, indicating
less spatial organisation of the PR rain fields; the PR range
consistently increases when it is computed using pixels
belonging to the BRAIN-TMI rain mask only.

All sensors have a larger nugget over Benin than Niger
(+22% for GV, +20% for BRAIN-TMI and +20% for PR).
This is consistent with the higher semi-variance values
at short interdistance found for the Benin rain-gauge
variogram compared to Niger (Figure 4). Furthermore,
the range of the variograms tends to increase from Benin to
Niger for all sensors (+6 km for GV, +3 km for BRAIN-TMI
and +3 km for PR). These consistent findings could be
related to the increased proportion of disorganised rainfall
structures associated with localised convection in Benin
relative to Niger (Depraetere et al., 2009; Vischel et al., 2011).
This could lead to enhanced beam filling and intermittency
effects on BRAIN-TMI in Benin, resulting in less-spatially
correlated estimated rain fields.

4. Quantitative error modelling

In this section, the performances of PR and BRAIN-
TMI estimates relative to GV are evaluated by means of
correlation and biases. In the rest of the document, the
comparisons between the satellite-based and GV estimates
are assessed on a point-to-point basis. A rainy pixel is
included in the statistics if both PR or BRAIN-TMI and
the GV are raining pairs, in order to emphasise the PR and
BRAIN-TMI ability to quantify precipitation. This choice
is particularly significant for BRAIN-TMI estimates since
retrievals are performed over the most restricted rainy zones.

4.1. Correlations and biases

Table 11 provides a summary of the performances of
both PR and BRAIN-TMI, compared to GV, based on
the correlation coefficient and the mean relative error
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(MRE). The latter is expressed in percentage and defined
as MRE = (Sat mean - GV mean)/GV mean. For PR/GV
comparisons that are outlined in section 2.4, the comparison
sample may not be significant enough to provide robust
statistics due to the PR limited swath. Additional MRE
values are therefore computed with the whole GV dataset
(not necessarily matching a PR overpass) and the PR data
over the climatological regions as an indication of PR biases.

The sensors’ sensitivity and the representativeness of
the comparison samples explain the mean and standard
deviation values. As expected, the Niger area shows higher
mean rain rates than the Benin area: 10% higher for the whole
GV dataset, 20% higher for the ‘BRAIN-TMI resampled’ GV
set, 16% higher for the climatological PR sample and 50%
higher for BRAIN-TMI.

The different trend observed for the point-to-point
comparison set between PR and GV is attributed to its
limited representativeness (section 2.4). Yet there is some
consistency as both PR and GV (i) show lower means in
Niger than in Benin, (ii) show higher means with this specific
dataset than with the other samples in Benin, and (iii) show
lower means with this specific dataset than with the other
samples in Niger.

BRAIN-TMI shows generally higher mean and standard
deviation values than PR and lower standard deviation than
GV in coherence with the PDF features presented in section
3.2. The PR estimate over the two climatological regions is
lower by about 21% when compared to the Benin GV mean
and 16% when compared to the Niger GV mean. Although
the climatological regions are larger than their respective GV
regions, this could be due to the significant underestimation
of the higher rain rates in the 2A25-v6 products. When
considering the pixels that are rainy for BRAIN-TMI, the
latter shows low biases relative to GV (below 12%). Note that
BRAIN-TMI retrieval presents a higher gradient in latitude
than GV given the underestimation in Benin (−12%) and
the overestimation in Niger (+9%). BRAIN-TMI retrievals
are highly dependent on rainfall climatology through the
Tb distributions at 37/85 GHz channels. These distributions
indicate more frequent deep convection (colder Tbs) in
Niger and shallower convection and possibly warm rain
in Benin (Figure 2). Overestimation of low to moderate
rain rates as seen in section 3.2 could explain the observed
positive bias in Niger. Non-uniform beam-filling effects
linked to disorganised rainfall structures associated with
local convection in Benin could explain the observed
negative bias in Benin. Finally, warm rain microphysics
(increasing water content near the ground: Xu et al., 2008)
could also contribute to a negative bias in Benin given that
these formation processes are more prevalent than in Niger.

The correlation coefficients between satellite-based and
GV estimates are always low (below 0.5). The differences
can be attributed to sample volume discrepancies, timing
and navigation mismatches and the uncertainties in the
respective rainfall estimates. The significantly greater nugget
in the PR variogram than in the GV variogram is also an
indication of the greater level of noise in the PR rain field
spatial structure, which may limit the correlation between
the two estimates. Similarly, as stated by Viltard et al. (2006),
the BRAIN-TMI algorithm relies on Bayes’ theorem and is
designed to optimise the overall bias, which increases the
variance.

4.2. Error model: conditional distribution of the residuals
(satellite QPE - GV)

The uncertainties associated with satellite estimates of
rainfall include systematic as well as random errors from
several sources (Yang et al., 2006). There is a fundamental
issue in segregating the proportion of the scatter due to
purely random error, and the proportion due to rain rate-
dependent conditional biases of both BRAIN-TMI and PR
that may be either positive or negative, producing additional
scatter. As the BRAIN-TMI retrieval database is built up with
PR profiles, PR and TMI errors will be compared to assess
the extent PR error could affect BRAIN-TMI retrievals.

The satellite rainfall estimate errors are represented
by the residuals between satellite rainfall estimates
and reference GV as expressed by Eq. (1). Based
on the previous considerations, conditional probability
distribution functions of satellite QPE errors ε are built. First,
the rain intensity Rref is tested as the main driving variable
conditioning the departures of satellite-based estimates from
GV. Given the nonlinearities of the satellite error, the
variability that may result from the observed atmosphere
and the sensors, and the non-Gaussian distribution of
errors, the conditional distributions of the residuals, denoted
f (ε|Rref ), are analysed within the framework of the so-called
Generalized Additive Models for Location, Scale and Shape
proposed by Rigby and Stasinopoulos (2005). This tool is
available in an R package called GAMLSS (Stasinopoulos and
Rigby, 2007). In this framework, the response variable is ε

and the explanatory variable isRref . We assume that f (ε|Rref )
has the same parametric form for all Rref values. For the
sake of simplicity and to distinguish between systematic
and random errors in satellite rainfall estimates, a number
of conditional densities parametrized with the first two
moments (the location µ – mean, to be linked to systematic
errors – and the scaleσ – standard deviation representative of
random errors) are considered here. The first two moments
as functions of the explanatory variable Rref characterise the
conditional distributions of satellite residuals.

GAMLSS models the parameters of a response variable’s
distribution. Such semi-parametric models consist of two
components: a parametric probability density function
(PDF) given each value of the explanatory variable and
a non-parametric relationship between the PDF parameters
(µ,σ ) over the definition domain of the explanatory variable.
Two main assumptions are made: (i) the response variable
ε is a random variable following a known parametric
distribution with density f (ε|µ, σ ) conditional on the
parameters (µ,σ ); and (ii) the observations ε are mutually
independent given the parameter vectors (µ,σ ). Each
parameter is modelled as a function of Rref (the explanatory
variable) using monotonic (linear/nonlinear or smooth)
link functions. More details are provided by Rigby and
Stasinopoulos (2001, 2005), Akantziliotou et al. (2002)
and Stasinopoulos and Rigby (2007). The rainfall trends
for each parameter are fitted using locally weighted
scatterplot smoothing (LOESS), which are more flexible
than polynomials or fractional polynomials for modelling
complex nonlinear relationships. The polynomial curve
is determined by Rref and fitted locally by weighted
polynomial regression, giving more weight to points near
the point whose response is being estimated and less
weight to points further away (Cleveland et al., 1993). A
trade-off between over- and under-smoothing is found
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Table 11. Performance criteria values for PR and BRAIN-TMI estimates.

PR Benin Niger

PR resampled (whole) robust GV PR >0.3 Robust GV PR >0.3

Mean (mm h−1) 4.52 (4.09) 3.77 (3.24) 3.29 (4.49) 3.43 (3.76)
standard deviation (mm h−1) 6.39 4.49 4.51 3.56
MRE/GV (%) – −16%(−21%) – 4% (−16%)
Correlation/GV – 0.52 – 0.40

BRAIN-TMI Benin Niger

BRAIN-TMI robust GV BRAIN-TMI Robust GV BRAIN-TMI

Mean (mm h−1) 5.59 4.92 6.68 7.3
standard deviation (mm h−1) 7.97 4.4 9.2 6.39
MRE/GV (%) – −12% – 9%
Correlation/GV – 0.24 – 0.41

Mean, standard deviation, mean relative error (MRE) and correlation (R) are given with respect to GV. These criteria are given for the Benin and Niger
areas. In addition, the climatological means and MRE are also provided when PR is compared with the whole GV dataset (brackets). Only the ‘robust’
GV data are kept (see section 2.2) for GV and only the rain intensities >0.3 mm h−1 are kept for PR.

following the procedure described by Stasinopoulos and
Rigby (2007). Several two-parameter density functions (log-
normal, normal, reverse Gumbel, logistic, gamma, etc.) have
been tested to fit the data. The distributions of residuals
(not shown here) were generally found to be unimodal
and asymmetric. The goodness-of-fit on the whole dataset
has been checked using the Akaike information criteria
(AIC, a penalised function of the log-likelihood function
to be minimised in the fitting procedure) for each semi-
parametric density fit. The reverse Gumbel distribution
(f (ε) = 1

σ

[− (
ε−µ

σ

) − exp
{− (

ε−µ

σ

)}]
, whereµ is the mean

and σ the standard deviation of the residual population) was
found to present the best fit. Figure 10 shows the residuals as
a function of Rref as well as the fitted GAM models for PR and
BRAIN-TMI over Benin and Niger. The conditional PDFs of
residuals present a high conditional shift from the zero line
(conditional median shifted from the zero line) and a high
conditional spread. Note that for Rref > 10 mm h−1, the
models are quite undefined because of the lack of observed
residuals. All models show that PR and BRAIN-TMI tend
to overestimate light rain rates (the median of residuals is
positive) and underestimate higher rain rates (median of
residuals negative). In order to compare BRAIN-TMI and
PR over the two areas, we extracted the systematic error
component (i.e. conditional bias). Because the conditional
density of residuals is non-symmetric, we used the median
rather than the expectation for a better representation of
this conditional bias. This is shown as a function of Rref

for PR and BRAIN-TMI over Benin and Niger in Figure 11.
The overestimation of light rain rates is more significant for
BRAIN-TMI than for PR and in Niger than in Benin (as
shown in sections 3.2 and 3.4): e.g. in Benin BRAIN-TMI
overestimates Rref = 2 mm h−1 rain rates with an occurrence
of 90% and with a representative bias of +2 mm h−1 while
PR overestimates the same rain rates with an occurrence of
70% and with a representative bias of +0.5 mm h−1. The
overestimation affects a larger range of rain rates for BRAIN-
TMI than for PR and in Niger than in Benin. The median of
residuals is equal to 0 at 4 mm h−1 and 4.5 mm h−1 for PR in
Benin and Niger respectively, while the median of residuals
is equal to 0 at 5 mm h−1 and 6.5 mm h−1 for BRAIN-TMI
in Benin and Niger respectively. Globally the PR performs
better than BRAIN-TMI in reproducing the lighter rain rates
(as shown in section 3.2) with limited overestimation. The

PR bias at higher rain rates is more significant. While the bias
is within +1 mm h−1 in both regions for Rref <4 mm h−1,
it decreases continuously for Rref > 4 mm h−1 to reach
−5 mm h−1 at Rref = 10 mm h−1. Once again, this is likely
due to the insufficient correction of PR attenuation for
heavier rain rates. For BRAIN-TMI the overall bias relative
to GV in Benin and Niger is low (see section 3.4) because
of the balance between the overestimation of light rain rates
and the underestimation of high rain rates.

It is worth noting that BRAIN-TMI is less biased than
PR for the higher rain rates. As the BRAIN-TMI retrieval
database is built up with PR profiles, at least as much
underestimation from BRAIN-TMI as for PR could be
expected. An inquiry to the BRAIN-TMI database revealed
that some PR profiles link high rainfall rates and low
brightness temperatures at 85 GHz and 37 GHz, and
contribute to the retrievals of BRAIN-TMI in highly rainy
situations, but these profiles are not from the African region.
In the retrieval database design a number of inconsistencies
between brightness temperatures and PR surface rain were
encountered. This was generally associated with (i) situations
when the PR profile could be insufficiently corrected for
attenuation in cases of heavy rain rates (light surface rain
with very cold 85 GHz brightness temperature), and (ii)
cold 85 GHz Tbs may not be associated with heavy surface
rainfall due to the satellite parallax and vertical shear (for very
deep convection, the surface location and corresponding PR
profile of the TMI footprint may be displaced 8 km from the
footprint at cloud top). These profiles were discarded from
the database, hopefully limiting the bias due to inadequate
correction for attenuation losses of the PR radar signal in
BRAIN-TMI.

For both BRAIN-TMI and PR, we finally quantify the
contribution of the rain rate-dependent biases to the
residuals. For each BRAIN-TMI or PR measurement, we
use the model of rain rate-conditioned bias (Figure 11) to
simulate the systematic bias corresponding to each residual ε
and reference Rref . For each sensor and GV domain the series
of observed residual ε is compared to the series of conditional
bias. A determination coefficient computed between the two
samples provides the proportion of variability in the residual
sample explained by the conditional bias. The results show
that 66% and 52% of the variance of the residuals is explained
by the systematic error for BRAIN-TMI over Benin and
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Figure 10. Satellite-based residuals represented versus GV for (top) BRAIN-TMI and (bottom) PR, over (left) Benin and (right) Niger; the GAM models
fitted are represented by 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 95 percentile lines.

Niger respectively, while 47% and 30% of the variance of
the residuals is explained by the systematic error for PR over
Benin and Niger respectively. This confirms that a significant
amount of BRAIN-TMI error is due to conditional biases
of the algorithm. The amount shows a regional dependence
(lower proportion of variability explained in Niger than
in Benin), which may be related to the rainfall regime. In
fact, residuals depend as much on the systematic biases
of satellite-based estimates as on the spread of the GV
rainfall distribution. The standard deviation of the GV
rainfall distribution in Niger being greater than in Benin
(Table 11), it is consistent that the contribution of satellite-
based systematic biases to residuals is lower in Niger than in
Benin.

5. Conclusions

In preparation for the Megha-Tropiques mission, the BRAIN
algorithm was evaluated using ten-year data samples from
the TRMM satellite passive microwave imager, active PR
rainfall products and surface rainfall derived from rain-
gauges over West Africa. The ability of space-based rain

retrievals to reproduce the differences of rainfall regimes
in Benin and Niger has been investigated to characterise
the satellite error estimate. The comparison has been
performed at the microwave satellite resolution to avoid
additional uncertainties by resampling. This is appropriate
to qualitatively and quantitatively assess the retrieval
uncertainties. A framework has been proposed to address
methodological issues so as to provide a preliminary version
of an error model for satellite instantaneous QPEs. The error
model is empirically derived and thus prone to be specific
to the dataset considered and the satellite data processing
implemented. Several factors limit the comparison samples
for ground-based and satellite-based estimates over the 10-
year period, especially for the PR comparison dataset. In spite
of the possible lack of robustness for the statistics considered,
the features of the error model are quite representative as
they show a consistent behaviour in terms of conditioning
with respect to rain rate.

Sampling uncertainty in the GV is confirmed to be an
issue for quantitative assessment of satellite products. Here
‘robust’ GV pixels were selected based on the value of the
kriging variance relative to the estimate. The finding is
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Figure 11. Conditional median of residuals as a function of GV for BRAIN-
TMI (black lines) and PR (grey lines), over Benin (solid lines) and Niger
(dotted lines).

that apparent misses in the satellite products are mainly
associated with GV pixels of high uncertainty; when the
comparison is limited to ‘robust’ GV points, the scores are
greatly improved.

Rainfall estimates from the three sensors show very
consistent features over the two mesoscale sites. BRAIN-
TMI and PR exhibit the differences in rain-rate distributions
and spatial structures between North Benin (Sudanese eco-
climatic zone) and Niger (Sahelian zone). Different error
sources were identified and quantified for BRAIN-TMI:

• Rain/no-rain delineation is suspected to cause the
most significant error. It was estimated that at least
20% of the rainfall volume is lost this way. The rain
mask fails to detect the lightest rain rates and the most
inhomogeneous parts of rain fields. Nevertheless,
variogram analysis showed the mask is sufficient to
capture the spatial structure of the rainiest and most
organised parts of rain fields.

• Within the rain mask, BRAIN-TMI presents a narrow
and low-biased PDF relative to GV; it smooths rain-
rate dynamics, which may be an effect of the Bayesian
scheme used.

• Designed to provide low overall biased retrievals,
BRAIN-TMI correctly estimates (with around 10%
accuracy) the interannual mean rainfall values over
the two areas.

• Finally, when adding the overall bias of retrievals
and the systematic misses of rain volume, the
underestimation of BRAIN is roughly 30% over Benin
(the volume of the not-detected rainfall adds up with
underestimation in the retrievals) and 10% over Niger
(the missed volume is compensated by overestimation
in the retrievals).

The PR was also compared with the GV to see if the
PR could be used as a reference to validate BRAIN-TMI.
Good convergence between PR and GV was found in terms
of contingency. While PR does not detect very light events

(<0.3 mm h−1), it may be used as reference to evaluate
the BRAIN-TMI rain/no-rain mask. It seems difficult to
use PR distribution as a reference to evaluate BRAIN-
TMI distribution since PR significantly underestimates high
rain rates. To validate BRAIN-TMI variograms we suggest
computing PR variograms within the BRAIN-TMI mask.

Finally, a statistical model that describes BRAIN-
TMI (and PR) uncertainty was developed. It quantifies
the relation between instantaneous satellite rainfall and
the corresponding reference rainfall. It consists of a
deterministic additive function and a random uncertainty
component, both conditioned on GV rain rate. The analysis
over the two GV sites showed a dependence on the rain
type (deep convection in Niger versus various convection
types in Benin). The contribution of systematic BRAIN-
TMI algorithm errors is confirmed to be quite large. They
probably arise from the physical inconsistency and/or non-
representativeness of the cloud-radiative-model-simulated
profiles that support the algorithm. This type of error is not
related to the sampling error, and further research must be
done to determine its relative contribution to the total error
in space-based precipitation estimates.

Further work will address the relative contributions
of errors resulting from uncertainties in PR estimates,
spatial sampling mismatches, and errors in cloud radiative
modelling. The same is true for the influence of the rainfall
type. Further research is necessary to improve the rain/no-
rain detection for BRAIN-TMI. Another important issue to
study is how the various error sources (misses, conditional
biases) propagate when merging with geostationary infrared
data for a number of satellite-based high-resolution
precipitation products.
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